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Centrifugal instability of time-dependent flows. 
Part 1. Inviscid, periodic flows 

By S. ROSENBLAT 
Mathematics Department, Imperial College, London 

(Received 14 October 1967) 

A n  investigation is made of the stability of time-periodic azimuthal flows 
between coaxial, circular cylinders. The disturbance equations are linearized and 
consideration is limited to the effects of axisymmetric disturbances in a fluid with 
zero viscosity. It is found convenient to examine separately the cases of flows 
with zero time-mean and non-zero time-mean respectively. Some remarks are 
made concerning the definition of stability in relation to such flows and their 
general stability characteristics are evaluated and discussed. 

1. Introduction 
Although the literature in the field of hydrodynamic stability is a vast one, 

a surprisingly small proportion of it has been devoted to examining the stability 
of flows which vary with time. Since such flows occur abundantly in nature, it is 
presumably because of the mathematical difficulbies involved that their study 
has been so neglected. In  recent years, however, some serious attention has been 
given to the problem. For example, Greenspan & Benney (1963) and Drazin 
( 1967) have considered broken-line shear profiles under various conditions of time- 
dependence, and Kelly ( 1965) has analysed an unsteady Kelvin-Helmholtz flow; 
while Shen (1961) and Conrad & Criminale (1965a, b)  have discussed several 
plane and circumferential viscous flows with time-variation. 

In  spite of these and other developments, it must be said that the effects of 
time-dependence on stability characteristics are only partially understood. It is 
the object of this paper to contribute something to that understanding by examin- 
ing in detail a particular class of flows: those which are periodic in time, which are 
azimuthal in the space between coaxial, circular cylinders and which have zero 
viscosity. This last assumption will naturally impose a serious constraint on 
the validity of the conclusions from a physical viewpoint, but it would seem 
nevertheless useful to analyse the simpler, inviscid problem as a preliminary 
to the viscous-flow problem which will be considered in a subsequent paper. 

It is necessary at the outset to specify carefully what is understood by stability 
and instability in this context. When the basic flow is steady the disturbance, 
analysed into normal modes, has exponential time-dependence which can be 
extracted from the (linearized) perturbation equations. Instability, defined as 
the growth of a disturbance, is then settled by the nature of the exponent of the 
exponential. But when the basic flow is unsteady this approach does not apply. 
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In  the first place the disturbance is no longer expressible as a simple funcbion of 
time and the mathematical problem is consequently more formidable. Secondly, 
growth of a disturbance is, while necessary, not always a sufficient condition for 
instability. For when the flow itself is changing, what is important is the relative 
growth of disturbance and basic flow, since it is this which determines whether 
the character of the flow changes as a result of interaction with the disturbance. 

A definition which incorporates this relative concept has been introduced by 
Shen (1961): a flow is unstable at the instant t = to if the ratio of the disturbance 
energy to the basic-flow energy is tending to increase at that instant, and stable 
if it is tending to decrease. This definition has the defect of being quasi-steady; 
when applied to a particular flow characterized by a parameter, such as the Rey- 
nolds number [as has been done by Conrad & Criminale (1965a, b ) ]  it will yield 
a critical value for the parameter which is different at each instant of time. 
If extended over an interval of time, therefore, it can only give a lower bound 
of critical values, or, equivalently, a sufficient condition for stability. Moreover, 
a quasi-steady criterion may not provide any useful information at all about the 
flow, as, for example, when the energy-ratio is increasing during part of a cycle 
of a periodic flow and decreasing during another part. 

Periodic flows are somewhat special, and often simpler than the accelerating 
and retarding flows which were the main focus of Shen’s (1961) study. Since they 
are bounded for all time, there is in general little difference between a criterion 
based on the growth of the disturbance itself and one which considers the dis- 
turbance-flow ratio. As suggested earlier, quasi-steady criteria are not very 
helpful for such flows, but, on the other hand, the asymptotic behaviour at  
t + 00 of the disturbance is usually an adequate test of stability (Kelly 1965; 
Drazin 1967). For inviscid fluids, moreover, since stability generally means 
neutral stability, boundedness a t  infinite time is equivalent to periodicity of the 
disturbance. 

However, as we shall see below, these tests are not invariably satisfactory. 
It is well to recall that our mathematical treatment is restricted to an analysis 
of linearized disturbance equations and that consequently a stable disturbance 
must not only tend to zero (or be bounded for inviscid fluids) as t + 00, but it 
must also remain sufficiently small for linearization to be valid throughout all 
time. This in fact is the basic criterion of instability: an infinitesimal disturbance 
which grows to a finite size is unstable. I n  a linearized system it grows beyond the 
limits of the linearization. How this criterion is applied in mathematical analysis 
can vary depending on the nature of the basic flow. It is therefore necessary to 
apply a boundedness or periodicity test with some care, since even a purely 
periodic disturbance may have to be regarded as unstable in the sense that it 
leaves the rkgime of linearization during part of its cycle. 

These ideas are illustrated in 9 3 below in application to  a simple model flow. 
For more general flows, it is convenient to examine separately profiles which have 
zero mean and non-zero mean with respect to time. This is done in §$4 and 5 
respectively and a general discussion follows in 3 6 .  
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2. Formulation 

continuity which are, in the usual notation, 
The motion of the fluid is described by Euler’s equations and the equation of 

The fluid is taken to be confined between coaxial circular cylinders of infinite 
length and of radii R,, R,, and the axis r = 0 of the cylindrical polar co-ordinate 
system (r,  8, z )  is coincident with the common axis of the cylinders. 

The basic flow whose stability is to be examined is a purely azimuthal motion 
described by the velocity vector 

where V ( r ,  t )  has the time-dependence 

The vector defined by (2.3) satisfies the continuity equation, but may not 
necessarily be a solution of the equations of motion (2.1); if it is not, we shall 
suppose that it is an approximation to a solution of the full Navier-Stokes 
equations. This procedure may be justified on the grounds that our objective 
is to extract basic qualitative features of such flows in the absence of viscosity, 
rather than to calculate quantitative results for particular velocity profiles. 
(In fact the most general inviscid solution of the type stipulated, which requires 
both a radial and an azimuthal pressure gradient to maintain it, is 

E(r, t )  = (l /r) F( t )  + G(r) ,  

where B’, G are arbitrary functions.) 
Introduce now a disturbance velocity vector defined by 

9 = [ O ,  w, t ) ,  01 + [u*(r, z, t ) ,  V*P, z, t),w*(r, z, t)l, (2.5) 

in which the class of disturbances is restricted to those with axial symmetry. 
Although it is not a priori clear that axi-symmetric disturbances would be the 
critical ones for a general flow it is permissible to examine their effects alone in the 
qualitative, inviscid analysis which is proposed. It is assumed that the perturba- 
tion velocities u*, v*, w* are sufficiently small to permit linearization of (2.1) and 
further that a normal mode analysis of the disturbance is valid. Then we set 

u* = u(r, t )  cos kz, v* = v(r, t )  coskz, w* = w(r, t )  sin kz, (2.6) 

substitute into (2.1) and (2.2) and linearize. After elimination of w and the pres- 
sure, the system reduces to a pair of equations for u and v, which may be written 

21-2 
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av 
- + (D*;ii) ‘u = 0, 
at 

(2.8 

where 
a a 1  
ar *-a r  r 

D = -  and D =-+-. 

As might have been expected, (2.7) and (2.8) are identical with the stability 
equations for a steady basic flow under the same circumstances, excepb of course 
that ;ii is a function of time. Consequently we have an eigenvalue problem for a 
partial differential system, the boundary conditions being as usual 

u =  0 on r = R, and r =  R,. (2.9) 

3. Rigid-body oscillations 
We consider first the stability of the almost trivial velocity profile 

- 
w(r,t) = V(r)P(ot ) ,  (3.1) 

where V(Y) is an arbitrary differentiable function in R, < r < R,, and P is perio- 
dic and has zero mean. This flow has the characteristic feature that the phase of 
the oscillation is independent of radial distance. 

The transformation 

converts the disturbance equations (2.7) and (2.8) into 

wherenow u = u (Y, T ) ,  v = w(r, 7). These equations, with time-independent coeffi- 
cients, are of course precisely those which govern the stability of the steady flow 
V(r) .  They admit solutions 

u = eY7ul(r), v = eYTwl(Y), (3.4) 

where the nature of the eigenvalue y is established from the classical Rayleigh 
criterion. If the discriminant, 

V 
r - P* V ) ,  

is positive everywhere in (Bl ,  RJ, then all the y are pure imaginary and occur 
in pairs 

If the discriminant is negative everywhere in the interval, then there is at  least 
one pair of real y which have the form 

y =  f y y  

y = k iy,. 

In  view of (3.2) the bime-dependence of the disturbances has in the former case 
the functional form 
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and in the latter case 

the yi and y,, being in principle determined once V( r )  is prescribed. 
When (3.5) applies the disturbance is bounded for all t and its magnitude 

remains O( 1)  compared with any initial value; the flow is therefore stable. When 
(3.6) is relevant *he disturbance is again bounded for all t and in this sense is also 
stable. It follows that if boundedness (or periodicity) is the criterion of stability, 
then all rigid-body oscillations (3.1) must be regarded as stable. 

However, this conclusion is not altogether accepkable from a physical view- 
point. It is clear that if the oscillations are sufficiently slow, the stabilitiy be- 
haviour will be quasi-steady; that is, the flow will be stable or unstable as V( r )  
is stable or unstable. This apparent contradiction can be resolved by observing 
that when V(r )  is unstable, (3.6) indicates that the magnitude of the disturbance 
is increased exp (y,,/w)-fold during the growth part of its cycle. Since ?.;. is in 
general O(l ) ,  this factor is large enough, when w < 1, for the disturbance to 
leave the linearized r6gimeT. 

It follows that a t  very low frequencies boundedness of the disturbance is not 
an adequate criterion of stability, and in this range quasi-steady considerations 
apply. Outside the low-frequency range, the flow (3.1) is stable for all V(r) .  

These considerations can immediately be extended to rigid-body oscillations 
with non-zero mean, as, for example, 

Z(r,t)  = V(T) ,  P(wt) = V(T)  [I +G(ot)], (3.7) 

where now G is periodic with zero mean. The transformation (3.2) is still applic- 
able, and the time-behaviour is again given by (3.5) or (3.6) which now have the 
form 

or (3.9) 

Hence when V ( r )  is stable, (3.7) is stable for all frequencies. When V(r)  is un- 
stable, (3.7) is unstable and this too holds for the whole frequency range. How- 
ever, the growth rate of the disturbance is a function of time, and when w < l 
the rate of change of this function is large. This fact would have a considerable 
effect on the further development of the disturbance, i.e. into the non-linear 
rbgime, but nothing more can be said within the confines of linearized theory. 

4. Flows with zero mean 
As a sequel to the above special results, it would seem natural to consider next 

the effects of phase differential in the radial direction, while retaining the zero- 
mean property. In the first instance we take the departure from rigid-body 
oscillation to be small. 

t These remarks apply to a disturbance whose initial amplitude is fixed as o --f 0. 
It would of course always be possible to find a disturbance sufficiently small for linear 
analysis to be valid when o < 1. 
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A fairly general prome of this type would have the form 

G(r,t) = V[r,wt+e(r)] ,  

with vat = o 
Jtt+2=’w 

and 161 < 1, but in place of (4.1) it is sufficient to consider 

B(r, t )  = Q(r) cos wt + e&(r) sin wt, (4.3) 

with E now a small constant. This, while somewhat less general thanI(4.1), retains 
the required characteristics. 

It is convenient at this stage to non-dimensionalize all quantities. Set 

(4.4) 1 x = r[R2, q = R,/R,, 7 = wt, 

a = kR2 and W), -+ !=,[Vl(X), w41, 
where Q is a typical (constant) angular speed. The perturbation equations (2.7) 
and (2 .8)  now become 

(4.5) 

(4.6) 

where h = sz/w (4.7) 

av 
at 
- + 2h [(D,‘) cos 7 + E(D*&) sin 71 u = 0, and 

a a 1  
ax x 

D E -  D =  and now ax’ * - -+-* 

The boundary conditions (2 .9)  are replaced by 

u = O  on x = q  and x=l. (4.8) 

The system ( 4 4 ,  (4.6) and (4.8) will be solved by a perturbation for small E .  

We suppose the nth eigensolution of the system is expressible in the form 

(4.9) 
u,(x, T) = [u(,o)(x, 7 )  + euuQ’ (x, 7 )  + . . .I, 
w,(x,7) = eccnT [ do) n (x, 7) + E w p  (x, 7) + ... I, 

where uf), vg) are the eigenfunctions when E = 0 and are consequently periodic 
in 7 ;  up), w$) are supposed also to be periodic in^; andcnis a constant. The stability 
of the system is then determined by the nature of the eigenvalue c, (except 
possibly at low frequencies). 

The expansion (4 .9)  is substituted into (4.5) and (4 .6) ,  and coefficients of like 
powers of E are equated. This leads to the following pairs of equations: 

I 

aug) V 
(DD, - a2) __ + 2a2h 2 cos 7 v p  = 0, 

a v p  
- 4- 2h  (D*Q) cos 7 u p  = 0, 
a7 

87 X 
(4.10) 
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and 

(4.11) i V - 2a2h -%in 7w:), 

a v p  
- + 2h(D*V,) cos 7 UgJ = - c, wp - 2h(D*&) sin 7ug’, 

X 

a7 

with u:) = up) = 0 on x = T,I andx = 1. 

and have elementary separable solutions which are conveniently written 
The equations (4.10) are of course merely those of the rigid-body osciUation 

ug) = [acos(ans in7)+ /3sh(a ,s in~) ]~ , (x ) ,  

where a, /3 are arbitrary constants, $,(x) is the solution of the equation 

4a2h2 V,( D, V,)] 
4 n  = 0 DD, - a2 +- ~ 

a; x 
(4.13) 

with #,(T,I) = &(1) = 0, and where Rayleigh’s criterion determines whether the 
eigenvalue an is real or imaginary. 

A particular solution of the inhomogeneous system (4.11) cannot be found in 
separable form. We therefore use a standard approximation technique wherein 
the x-dependence is dealt with by expanding UP) and wg) in series of the eigen- 
functions $, the coefficients being functions of time. That is, we put 

W “ 1  

m = l  m = 1  a m  
up’ = 2 Am (7) #m(X) and ~2 = - 2h(D* V,) CI - Bm(7) $m(x) (4.14) 

and substitute these, together with (4.12), into (4.11). This gives 

2 1, r+ + am COB c,[a cos (a, sin7) 
r n = l g m  7 

& + p sin (a, sin T)] + a,- sin 7 [a sin (a, sin 7 )  - p cos (an sin 7 ) ]  v, 
and 

cn[a sin (an sin 7 )  

D V  - /? cos (cf, sin 711 - a, *‘sin 7 [a cos (gn sin 7 )  + /? sin (a, sin 7) ]  
D* v, 

Since the functions 4 are orthogonal in (7,l)  with respect to  the weighting 
factor [V,(D*V,)]*, we multiply each of the equations (4.15) by q(D*K)q5, and 
integrate over the range. Introducting the notation 
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we obtain the following pair of equations: 

dAn ---++,cosTB, = hlla+h,,P, 
dr  

d r  
u, COST A ,  = hz1a + h2J, ~- dBn 

(4.17) 

(4.18) 

where h,, = - c ,  cos (u, sin r )  - u,pn sin T sin ( u, sin 7 ) )  

h,, = -cnsin(unsinr)+unpnsinr~os(unsinr), 

h,, = - c, sin ( u, sin r )  + un qn sin r cos ( a, sin r),  

h,, = c, cos ( un sin r )  + un qn sin T sin ( an sin 7). 

We now seek a condition that (4.17) should yield solutions A ,  and B, which 
are periodic with period 27r. The result can be written down from standard 
theory of differential equations as follows (Coddington & Levinson 1955, p. 74). 
If g(7) is the matrix of coefficients of the homogeneous form of (4.17), that is if 

(4.19) 

and i fg (r )  is the 2 x 2-matrix solution of the adjoint to the system 

- = gz, Z ( 0 )  = I ,  (4.20) 
az 
d r  

then (4.17) has periodic solutions if and only if 

where 

/02nz(r) h(7) ydr = 0,  

h(r) = (ii: ii:) and y = (i). 
(4.21) 

(4.22) 

The vector equation (4.21) is of course two equations, involving the eigenvalues 
c, and the initial values a, p. For arbitrary CI and ,8 the values of c, are the roots 
of the determinantal equation 

From (4.20) it is easily shown that 

cos ( u, sin r )  sin ( (T, sin r )  
- sin ( a, sin r )  cos (an sin r )  

z =  ( 

(4.23) 

(4.24) 

so that the integrals in (4.23) can be written down immediately. Some of these 
integrals are identically zero, and after some simplification we obtain 

1 
c, = 2n ( p ,  - q,) an sin r sin (u, s k r )  cos (a, sinr) dr.  (4.25) 

This remaining integral is a Bessel-function representation (cf. Watson 1966, 
p. 20) and so we have finally 

cn = +@n - qn) un J,('an)* (4.26) 
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The foregoing analysis is based on the hypothesis that the disturbance equa- 
tions admit a solution of the form (4.9), together with the representation (4.14). 
Although not substantiated here, this type of approximation scheme is of fre- 
quent use and its validity is assumed. If this is the case, an inspection of the 
formula (4.26) shows that both values of the characteristic exponent c, are real 
irrespective of whether IT, is real or imaginary, and irrespective of the values of 
p, and q,. Consequently it appears that all flows of the type (4.3) are unstable in 
this sense; a phase-differential in the radial direction, however small, is sufficient 
to cause instability in a flow with zero mean. 

This conclusion requires modification in three exceptional cases: (i) when the 
parameters of the flow and the wave-number are such that 2 1 ~ n  is a zero of J ,  
the disturbance is marginally stable, i.e. c, = 0. This is a singularity of the 
mathematical analysis and appears to be without any special physical signifi- 
cance. (ii) When pn = q,, the nth mode of the disturbance is marginally stable 
for all cr,. By reference to (4.16) we see that this is in fact the condition that 

The significance of this case is discussed in $6. (iii) A further exception has to be 
made when the frequency of the oscillation is very small or rather when 

h = e/w $ 1. (4.27) 

In  this case our interpretation of the result (4.26) must be modified in the light 
of the remarks in 5 3: if V,(r) is stable the phase-differential causes instability in 
the same way as above. If, on the other hand, V,(r) is unstable, there is again 
instability of the flow (4.3) but this is still the quasi-steady instability of the rigid- 
body oscillation, modified by, but not due to, the phase-differential. 

We now briefly turn our attention to the more general zero-mean flow (4.3) 
in the case when e is not small. 

This will obviously be a far more complex problem than the one just considered 
and will involve a good deal of computation. It is not proposed to proceed with 
the calculations here, as the problem will be studied in detail in a subsequent 
paper, with the effects of viscosity taken into account. 

When e > 1, however, a solution can again be obtained by a perturbation 

el = 1/s and A, = As, (4.28) technique. If we set 

the disturbance equations (4.5) and (4.6) become 

( D D * - a 2 ) ~ + 2 a ~ A , [ ~ s i n 7 + E l - c 0 s 7  ar V , l  X 'u = 0, 

av -+ 2h,[D, V, sin7 + s lD,  V,  COST]^ = 0. 
a7 

These are clearly in essence the same equations as (4.5) and (4.6) and can be 
treated in the same way. When s1 = 0 we have stable rigid-body oscillations; and 
when el + 0, but is small we have a phase-differential destabilization as before. 

Consequently the flow (4.3) is unstable for both e < 1 and s > 1. It seemsreason- 
able to expect therefore that it is also unstable for intermediate value of s. 
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5. Flows with non-zero mean 

from steady flow. We take as a typical flow 
In this category we consider first a profile which represents a small departure 

Z(T,  t )  = v, (T)  + E G ( T )  COSWt, (5.1) 

which when E 1 lends itself to solution by a perturbation method. The dis- 
turbance equations (2.7) and (2.8) are again appropriate and, after non-dimen- 
sionalization with the scheme (4.4), they become 

av 
and -+22h[D*V,+ED*~COS7]U a7 = 0, (5.3) 

with boundary conditions as before. 
It will appear in the subsequent investigations that the effects of time- 

dependence in the flow (5.1) are different according as V,(r) is itself stable or un- 
stable. ID is therefore convenient to discuss the two situations separately. 

(i) When V,(r) is stable 
The eigenfunctions when E = 0 are known in principle and can conveniently be 
written 

u = uC) = [a~os~ , r+ ,8s in~~r]q5 , ( x ) ,  (5.4) 

where all the eigenvalues CT, are real in this case, the functions q5, (~)  again satisfy 
(4.131, and a, p are initial constants. 

For the system (5.2) and (5.3) we seek a solution which has the form 

(5.6) 
m 

A,(7) q5,(x) + . . . 

" 1  

m=l flm 
vg) - E 2A(D, V,) Z - Bm(r) &(x) i- . . . and 

where A, and B, are to be periodic functions of 7. On substituting these into 
(5.2) and (5.3), and equating coefficients of like powers of E ,  we have of course 
that the zero-order system is identically satisfied, while the first-order system is, 
after multiplying by V,D, V,q5n and integrating, 

dAn 
~ + a;, B, = - c,(a, cos vnr + /3 sin cnr) 

dBn -- gnAn = -cn(asinn,r-/3cosc,r) 

dr  
--npncosr (asinv,r-,8coscTnr) (5.8) 

and a7 
+ r, qn. cos r (a  cos gn r + ,8 sin r ) ,  (5.9) 

where pn and q, are defined in (4.16). 
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For general values of o;, these equations admit periodic solutions only ifc, = 0. 
In  this case the eigenfunctions are periodic to O(s); i.e. the disturbance is a stable 
one. 

An exceptional case occurs when 
(7, = 4; (5.10) 

this is a resonance phenomenon, the well-known 'subharmonic response ' which 
is to be found in the general behaviour of equations with periodic coe5cients, 
such as the Mathieu equation. The eigenvalue problem for c, in this case can be 
treated as in $4: we require that the solutions A,, B, be free from secular terms 
7 cos +T, T sin $7. Some straightforward algebra leads quickly to the result 

Cn = + Q ( P n - P n )  (5.11) 

as the periodicity condition. The disturbance is therefore unstable for any flows 
V,, V, with the exception of the singular case when p ,  = 4,. 

In  fact this instability occurs not only when CT, = 9, but within an s-band of 
this value (as with the Mathieu equation); the growth rate (5.11) is however the 
maximum for the instabilities in this band. Also analogously with the Mathieu 
equation, further resonances of this type will be found to be present in the neigh- 
bourhood of u, = 1, +, . . . if the calculation is pursued to order @, @, . . . but it does 
not seem worthwhile to continue with the calculations here. 

It is interesting to note that KirchgBssner (1960) has stated (though without 
proof) a stability criterion for a general flow E(r, t )  in the configuration under dis- 
cussion. This is that a sufficient condition for the stability of the flow @(r, t )  is 

@(r,t)  > 0, I)*@ > 0 

in R, < r < B,, all t .  The above result appears to  constitute a counter-example to 
this criterion. 

(ii) V,r unstable 

The resonance destabilization just discussed is clearly only relevant when u, 
is real, and so has no application to unstable disturbances. In  this latter case the 
effect is rather a modification of the growth-rate and we seek a solution which 
represents this. 

Let yn be the growth-rate (= iv,) and write the eigenfunctions when E = 0 as 

where $,(x) again satisfies (4.13), with CT; now replaced by - y:. For the perturbed 
eigenfunctions we circumvent some algebra by anticipating the result that 
the change in the growth-rate is O(e2), and so we set 

and 

$m(5)+ . . . ] .  (5.14) 



332 8. Rosenblat 

The procedure now is as before. We substitute (5.13) and (5.14) into the dis- 
turbance equations (5.2) and (5.3), equate coefficients of like powers of E ,  multiply 
each equation by V,(D, V,) 4, and integrate with respect to II: over (7 , l ) .  This 
then leads to the equations 

as coefficients of 8, while the &system is found to be 

I dCn 
~ + y,(C, - D,) + C, - ynpn cos 7 B, = 0, dT 

I (5.15) 

The particular solutions of (5.15) are immediately obtained. They are 

and 

(5.16) 

(5.17) 

(5.18) 

When these are substituted into (5.16) it is clear that the solutions C, and D, 
in general contain terms proportional to 7; but these can be eliminated if c, takes 
an appropriate value. Some elementary algebra leads quickly to the result 

(5.19) 

the condition for absence of the secular terms. 
This formula shows that for unstable V,(r), cn is always real irrespective of the 

particular shape of the basic-flow velocities. Moreover, c, is negative when yn 
is positive and vice versa, which means in particular that the positive growth-rate 
of anunstable disturbance is diminished by an amount e2c,. It is this feature which 
has been the basis of the experimental results of Donnelly, Relf & Suhl (1962) 
and Donnelly (1964). They have found that the critical value of the Taylor 
number for a given steady flow between rotating cylinders is increased when a 
small amplitude oscillatory flow is superimposed. Although the actual increment 
in the Taylor number can only be found by including viscosity, the above calcula- 
tions clearly indicate a trend towards stabilization of unstable disturbances. On 
the other hand (5.19) suggests a destabilization of the conjugate, damped dis- 
turbances. This effect has not been observed experimentally, and presumably it 
will be eliminated by viscous action. But it follows that a complete explanation of 
Donnelly’s observations can onlybe provided by treating the full viscous problem. 

The resulb (5.19) immediately raises the question of whether all growing 
disturbances can be completely stabilized by taking E large enough. It is therefore 
particularly interesting to examine the profile (5.1) when E is not small. 
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1. In the limit e + 00 the flow 
becomes the zero-mean rigid-body oscillation V,(r) cos wt, which is stable. When 
E is very large but finite we are in effect considering the profile 

The result can be obtained directly when e 

@(r, t )  = V,(r) cos wt + el&@), (5.20) 

with el = 1/e << 1, the disturbance equations (5.2) and (5.3) being appropriately 
modified. The oscillatory component of the flow is now dominant and it is not 
difficult to show, by a technique similar to that used in 5 4, that (5.20) is in general 
unstable for every particular V,(r) and &(r). It follows that even if (5.1) is com- 
pletely stabilized as e increases, it  becomes unstable again when e is sufficiently 
large. This behaviour was also found by Conrad & Criminale (1965b). 

When e = O(1) we are again faced with a difficult computational problem 
which will not be tackled here in any generality, since quantitative results in the 
absence of viscosity are not very meaningful. However, insight into the behaviour 
of the disturbances can be gained by considering a special, simplifying case of 
(5.1). 

- 
v(r, t )  = V,(r) + (s /r)  cos wt, We take 

where &(r) is an unstable flow and e is not necessarily small. Since now 

D*(l/r) = 0 

the equations (5.2) and (5.3) are at once reducible to the single equation 

in which v has been replaced by (D, V,) v. To solve this we put 

00 

= X Arn(7) $m(x), 
m = l  

(5.21) 

(5.22) 

(5.23) 

where the $ m ( ~ )  are the eigenfunctions of the flow V,, to each of which corresponds 
an eigenvalue ym, at least one of which is real; and the A,(r) are to be determined. 
We next follow the usual orthogonalization procedure, and this leads to the 
infinite set of equations 

dZA, m 

_ _ _  y i  A ,  - sy; p,,Am cos r = 0, 
dr2 m = l  

with n = 1. 2. ... and 

(5.24) 

J v,(D* v,) $; dx 

The extent to which this system can be simplified and information inferred 
about its solutions depends on the importance of the coupling between the equa- 
tions. If the coupling is strong there appears to be no alternative to a formidable 
computational problem. On the other hand, if the coupling is zero each member 
of (5.24) reduces to a Mathieu equation, the properties of which are well known. 

'I 
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Therefore when the coupling is weak it seems reasonable to suppose that the 
principal features of the solutions are similar to those of Mathieu functions. 

If the yn are arranged in decreasing order of magnitude then the function A, 
will be given approximately by the equation 

d2A, -- ~ ~ [ 1 + ~ p , , c o s r ] A ~  = 0 
dr2 

(5.25) 

provided pll % p12 % p, . . . . This inequality will in general hold if the function 
V,(r) is such that the eigenvalues yn are moderately widely spaced, and in such 
circumstances (5.25) will describe the dominant behaviour of the instability. 

Assuming these conditions, we compare (5.25) with the standard Mathieu 
eauation 

(5.26) 

and examine solutions for fixed a c 0. It is known (see, for example, 
McLachlan 1964, p. 41) that, as q increases from zero, the solution which 
is unstable with growth-rate (-a)* when q = 0 becomes monotonically less 
unstable until it reaches a point of neutral stability when q = -a approximately. 
Then, with q continuing to increase, there is a narrow band in which all solutions 
are stable, followed again by instability. Further stable regions occur as q -f 00, 

but they become increasingly narrow. 
Comparison with (5.25) shows that for fixed y1 and increasing E ,  the solution 

A,  is mainly unstable except within certain stable bands, the first and widest of 
which occurs when 

E = 2lPll. (5.27) 

As 8 increases from zero to the value 2/p11 the growth-rate decreases monotonic- 
ally from y1 to zero. 

Certainly this conclusion must be modified in the presence of finite coupling 
between the equations (5.24), and it may be that the stability region is displaced, 
reduced in width or even eliminated altogether. Also it should be noted that we 
have been considering only the lowest mode of the uncoupled system and that 
even when this is stable the second and higher modes may continue to be 
unstable. Nevertheless, the above results suggest that there is likely to be an 
optimum value of E ,  of order 1, at which maximum stabilization occurs, particu- 
larly in an real fluid when viscosity may be expected to damp out all except the 
lowest mode. 

Finally it may be pointed out that the behaviour-patterns discussed in this 
section continue in general to apply when: (a)  the profile (5.1) is generalized to 

5(r,t) = v,(r) +E[&(Y)  coswt+v~(r)sinot], 

i.e. with a phase-differential in the oscillatory component of the flow; ( b )  the 
frequency o is very small, subject to the qualifications of $3; ( c )  the profile has 
the form 

Still more general flows might be expected to behave in agenerally similar manner. 

- 
B ( T ,  t )  = V,(r) [l + cos wt] + E['VZ(T) cos ot + V&) sin wt]. 
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6. Discussion 
The results of the foregoing analyses may be summarized as follows. 
(i) Flows which are periodic about a zero mean are in general unstable, 

except for rigid-boundary oscillations of the fluid. This certainly appears to be 
the case for both small and large departures from the rigid-body state, and the 
nature of the equations strongly suggests that it will also be the case in the inter- 
mediate region. A further, interesting exception has been noted, namely that 
for an order-s perturbation to the nth mode of the rigid-body solution, aneutrally- 
stable disturbance occurs when 

It may be inferred from this that all the modes will remain neutrally stable 

&P*&)-&P*&) = 0. (6.2) 
only if 

For the flow in question, given by (4.1), equation (6.2) is simply the condition 
that the vorticity of the flow and its velocity are everywhere in phase. The cri- 
terion which this suggests, therefore, is that instability occurs when velocity and 
vorticity are out of phase. This is a new type of instability, associated with the 
periodic motion and different from, and independent of, inflexion-point or 
centrifugal instabilities. 

Some inferences can now be drawn concerning the role of viscosity. In  the 
first place the phase-difference between velocity and vorticity is a direct conse- 
quence of viscous action. This is evidenced by any solution of the diffusion equa- 
tion having time-periodic boundary conditions, of which the classical Stokes 
shear-layer is a prototype. It is only in the absence of viscosity that a basic- 
flow solution having the property (6.2) can be found. Thus, although the above in- 
stability has been found from thenon-viscous disturbance equations, it may be said 
that viscosity is really the cause of it in that it gives rise to the unstable basic flow. 

In  addition to this, viscosity will have an influence on the disturbances them- 
selves, and it is anticipated that its effect will be able to damp the growth-rates 
and possibly to stabilize the flow completely in some subcritical region. The details 
will be examined in a subsequent paper, but there seems no reason to  modify the 
above conclusions in a general sense. 

(ii) When the flow is an oscillation about a non-zero mean, the oscillatory 
component destabilizes a stable mean flow and tends to stabilize an unstable one. 
Equations (5.11) and (5.19) suggest that exceptions occur when the velocity and 
vorticity are in phase, from which we might infer that a situation obtains similar 
to tha t  discussed above. 

These conclusions refer to situations where the oscillatory component is not 
too large in amplitude compared with the mean steady component; for if it is 
too large, the flow will more nearly resemble the zero-mean flow of (i) above. In 
the presence of viscosity, neutrally-stable inviscid disturbances are damped so 
that destabilization, while continuing to be present as a tendency, will only 
actually occur when the amplitude of the oscillatory component is large enough 
to overcome the viscous damping. 
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